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Fusing and refining convolutional neural
network models for assembly action
recognition in smart manufacturing
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Abstract

Assembly carries paramount importance in manufacturing. Being able to support workers in real time to maximize their

positive contributions to assembly is a tremendous interest of manufacturers. Human action recognition has been a way

to automatically analyze and understand worker actions to support real-time assistance for workers and facilitate

worker–machine collaboration. Assembly actions are distinct from activities that have been well studied in the action

recognition literature. Actions taken by assembly workers are intricate, variable, and may involve very fine motions.

Therefore, recognizing assembly actions remains a challenging task. This paper proposes to simply use only two wearable

devices that respectively capture the inertial measurement unit data of each hand of workers. Then, two convolutional

neural network models with an identical architecture are independently trained using the two sources of inertial

measurement unit data to respectively recognize the right-hand and the left-hand actions of an assembly worker.

Classification results of the two convolutional neural network models are fused to yield a final action recognition

result because the two hands often collaborate in assembling operations. Transfer learning is implemented to adapt

the action recognition models to subjects whose data have not been included in dataset for training the models. One

operation in assembling a Bukito three-dimensional printer, which is composed of seven actions, is used to demonstrate

the implementation and assessment of the proposed method. Results from the study have demonstrated that the

proposed approach effectively improves the prediction accuracy at both the action level and the subject level. Work

of the paper builds a foundation for building advanced action recognition systems such as multimodal sensor-based action

recognition.
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Introduction

Fluctuating market demand, increasing needs for cus-
tomized products, and recent unprecedented techno-
logical advancements are leading the manufacturing
industry to adopt advanced practices of smart manu-
facturing.1 By means of this paradigm shift,
workplaces of future manufacturing are being trans-
formed from task-centric to worker-centric.
Consequently, the role of workers is expected to be
more important than ever.2 In human-centric manu-
facturing tasks, like assembly, recognizing actions
that a worker is taking provides just-in-time informa-
tion on mistakes or difficulties the worker may have,
which allows for addressing those in a near real-time
manner.

An action can be defined as a pattern of motions
performed by individuals, which usually lasts for a

short period of time with an intention.3 Action recog-
nition (AR) involves automatically detecting and
recognizing human motions from sensor data.4

Analyzing motions or actions has a long history and
it has been an important research topic of various
disciplines ranging from psychology to computer
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vision.5 AR research is motivated by numerous appli-
cations such as surveillance,6 fall detection,7,8 assisted
living,7,9–11 human–machine interaction,6,9,12 health-
care6,8–10 to name a few.

Assembly carries paramount importance in manu-
facturing. Assembly accounts for over 50% of total
production time and 20% of total production cost.13

One step of assembly usually is composed of multiple
actions with each having a clear objective. Failing to
deliver the intermediate outcome from each action in
good quality may impede the progress of assembly.
Therefore, being able to support assembly workers in
real time to maximize their positive contributions to
assembly is a tremendous interest of manufacturers.
However, AR in the worker-intensive manufacturing
assembly is nontrivial. Actions that workers take in
assembly are distinct from other types of activities
widely studied in the AR literature. They are intricate,
variable, and may involve very fine motions.
Moreover, complex operations are continuously
introduced to assembly to meet the growing demand
for customized products. Consequently, the boundary
of assembly actions is open, making the AR in assem-
bly harder than ever. Despite the importance of recog-
nizing assembly actions, limited efforts have been
dedicated to this endeavor.14–18

Sensor data predominantly used by AR include
video data captured from conventional RGB cameras,
depth and skeleton data collected from depth cam-
eras, and orientation, motion, and electromyography
data from wearable sensors. Among these, wearable
sensors have their unique advantages, such as easy to
carry, inexpensive, sensitive, wireless, privacy pre-
served, and low in computational cost.7,9,19 Due to
these advantages, wearable sensors are particularly
suitable for capturing intrinsic or fine motions of
assembly workers. Inertial measurement unit (IMU)
is often embedded in various wearable devices, which
includes an accelerometer, a gyroscope, a magnetom-
eter, or a combination of these. Because an IMU is
able to capture the orientation and motion data of a
human body part where it is attached, it is widely used
for AR. However, data captured from a single unit
are less reliable for capturing all relevant information
of actions. For example, an action taken by a worker
may involve the collaboration of multiple body parts.
Assembly workers often use both the left and right
hands in operations. Therefore, data from multiple
IMUs complement each other and may enhance the
reliability of recognition.4

Substantial efforts have been made for fusing mul-
tiple sensors attached to different parts of the human
body to improve AR performance. Some novel ideas
of this endeavor have been explored. For example,
Guo et al. proposed a multisensor multiclassifier hier-
archical fusion algorithm based on entropy weights
and discussed the implication of feature dimension
in classifying ten gym activities using five wearable
inertial sensors.20 Banos et al. developed a sensor

weighting hierarchical classifier by combining the clas-
sification capability at the class level and the source
level.21 The work showed the impact of feature dimen-
sion on the ability to recognize nine daily living activ-
ities using five bi-axial accelerometers. Guo et al.
designed adaptive weighted logarithmic opinion
pools to classify 13 daily living activities.22 This
study demonstrated the significance of sensor modal-
ity using five pairs of tri-axial accelerometer and
bio-axial gyroscope. Other researchers used straight-
forward yet effective sensor fusion techniques and
examined several crucial issues like sensor placement,
sensor degradation, interconnection failures, jitter,
and so on. As for instance, Zappi et al. applied the
majority voting and naı̈ve Bayesian sensor fusion
schemes to demonstrate the implication of sensor scal-
ability and robustness in recognizing 10 activities of
quality inspection in a car assembly line using 19
body-worn accelerometer sensors.23 Zhu and Wang
also adopted the majority voting in recognizing 13
daily activities using two inertial sensors and dis-
cussed the capability of sensor fusion in classifying
fine and coarse grain actions.24 Yet, in the real
world of manufacturing, letting workers wear less sen-
sors is highly desired. A recent study showed that the
fusion of two deep learning classifiers, which were
independently developed using IMU data from two
different wearable devices, was a cost-effective way
to largely improve the prediction accuracy of assem-
bly actions.25 Determining the ability of using min-
imum number of IMUs to recognize assembly
actions would build a knowledge foundation for
creating multimodal sensor based AR.

While both recurrent neural networks (RNN) and
convolutional neural networks (CNN) have been used
in the literature for human AR, this study proposes
the latter for its two advantages over the former:
signal dependency and scale invariance.26 Signal
dependency means sensor signals are likely to be cor-
related. This study arranges sensor signals as images
fed to CNN, making it straightforward to discover
both the temporal correlation of individual signal
series and the between-series correlation. This, how-
ever, is more difficult for RNN. The scale invariant
property refers to the robustness of the CNN algo-
rithm in handling different sampling rates or frequen-
cies. Yet, this could be an issue for RNN.
Furthermore, the inference time of a RNN model
such as a long short term memory network generally
is longer than a CNNmodel, thus being challenging in
the real-time AR and prediction.27

Annotated large datasets of assembly actions are
not publicly available for multiple reasons. Yet, work-
ers are heterogeneous in work habit, job efficiency,
learning ability, and sensitivity to pressure.
Assembling processes are diverse. A practical way is
to, firstly, train AR models in a focused setting. For
instance, training an AR model for workers who per-
form the same operation but in different shifts on a
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workstation of an assembly line. Then, scaling up the
implementation of the model through adapting the
trained model to new workers or transferring
the model to other operations of assembly.

The study presented in this paper aims to meet the
need for an AR model in assembly, which can be
developed with a minimum number of wearable sen-
sors and is transferable to new workers or new oper-
ations. For this purpose, the study first builds AR
models for different body parts that collaborate in
assembly operations. For example, if an operation is
mainly performed by hands, two IMU are respectively
attached to the two arms of each worker. The col-
lected data are used to independently create two
IMU-based AR models, one for the left hand and
the other for the right hand. Then, the study investi-
gates the effectiveness of model fusion in depth, at
both the action level and the subject level. Beyond
that, AR models are refined to adapt to new workers.

The remainder of the paper is organized as follow-
ing. The next section presents the proposed approach
to creating, refining and fusing IMU-based AR
models. Then, experiments are designed for obtaining
required data of study, followed by the assessment of
the proposed approach. Findings from this study and
important extensions of the current work are summar-
ized at the end.

The methodology of model fusion
and calibration

This study set up two wearable sensors to respectively
capture IMU data of two hands for training two deep
neural networks (NN) for recognizing assembly
actions. Then the two models were further fused to
provide more reliable performance of AR. Transfer
learning was implemented to adapt the AR models
to new workers whose data were not included in the
original training dataset. Details of the proposed
methodology are presented below.

Armbands with IMU sensor for data collection

Wearable devices used by this study are two Myo
armbands developed by the Thalmic Labs,28 worn
on a worker’s left and right forearms, respectively.
The IMU in the armband is a nine-axis device that
consists of a three-axis gyroscope, a three-axis accel-
erometer, and a three-axis magnetometer. It provides
the data of the armband in 13 columns including the
orientation (seven columns, in both quaternions and
Euler angles), velocities (three columns), and acceler-
ations (three columns), all at the sampling frequency
of 50Hz. Figure 1 illustrates a sample of the IMU
time series data.

The two armbands were used to collect data for
respectively training and testing two AR models: the
left-hand IMU-based model (LH-IMU), ML, and
the right-hand IMU-based model (RH-IMU), MR.

Data were repeatedly collected from Nwk workers,
indexed by n, who were performing the same assembly
operation. Workers took a sequence of Nac actions,
indexed by k, to complete the operation. Let DL,n and
DR,n denote the IMU time series data collected from
the left-hand and the right-hand armbands of worker
n, respectively. In the remainder of the paper, the
index of armbands is denoted by m, for m 2 fL,Rg.

Data preparation

A sliding window technique was used to extract mean-
ingful segments of time series data from the long time
series of signals captured by armbands. In this paper,
the extracted segments are named action-level signal
images (ASI) that are used to train and test CNN AR
models. ASIs are in the size of 50�t� 13� 1, and the
three dimensions are width, height, and color channel
of ASIs, respectively. 50 is the sampling frequency of
the Myo armbands, and �t denotes the time span of
the sliding window in second (e.g. when �t ¼ 2, the
width of ASIs is 100 frames). 13 is the number of
signal series captured from each armband, and 1
means ASIs have only one color channel just like
grayscale images. The ASIs obtained from the arm-
band m were divided into the training dataset, Str

m, and
the testing dataset, Sts

m, which are mutually exclusive.
The window length in second, �t, needs to be

appropriately selected to be able to capture distinct
features of individual actions. Successive windows
are overlapped to better handle the transition from
one action to another.25 The selection of these two
parameters are largely dependent of the actions to
be studied.

CNN AR models and the model fusion

Two independent CNN models, ML and MR, were
trained with the training datasets Str

L and Str
R, respect-

ively. Figure 2 illustrates the proposed CNN architec-
ture. For each ASI fed to the CNN, the first two
convolutional layers filter it with kernels of size

Figure 1. Thirteen-column time series data collected by the

9-axis IMU.

Al-Amin et al. 3



3� 3 and then the 2� 2 downsampling is performed
by the max pooling layer. A feature map is generated
using the ReLU function from each of these three
layers. This procedure is repeated one more time.
Then, the obtained feature map is flattened, densified,
and converted into a feature vector of size Nac. This
feature vector is converted into a probability distribu-
tion on the Nac actions, becoming a probabilistic clas-
sification of the input ASI. The proposed CNN
models have a relatively shallow architecture, which
is suitable for analyzing the signal data of this study
and effectively mitigates the issue of vanishing gradi-
ent. Interested readers may refer to Krizhevsky et al.29

for details of CNN.
To train the CNN models, Adam, an adaptive

learning rate optimizer coupled with the cross entropy
cost function was used. The learning rate of Adam
dynamically decreases with the iterations. The study
used the default setting of the algorithm.30 The L2
and dropout regularization techniques were also
used to avoid the issue of overfitting.

Let xm,v be an ASI that is indexed by v and fed to
the CNN model Mm. Then, ym,v and ŷm,v denote the
ground truth and the probabilistic classification of
xm,v, respectively. Figure 3 illustrates the approach

to model fusion. An action lasting �t is simultan-
eously captured as two ASIs, xL,v and xR,v. Then,
the LH-IMU and RH-IMU models provide two inde-
pendent probabilistic classifications, ŷL,v and ŷR,v,
respectively. This study averages the two classification
results as the final probabilistic prediction of the
action

ŷv ¼ ðŷL,v þ ŷR,vÞ=2 ð1Þ

Transfer learning for model calibration

The modelsML andMR may also be used to recognize
the actions of inference subjects who are workers not
in the group of subjects sampled for training the
models. When this happens, the AR models may
not perform well, probably because of worker hetero-
geneity. This study used transfer learning31 to effect-
ively adapt the trained AR models to new workers.
Specifically, a small set of ASIs collected from new
workers were used to fine-tune the trained AR
models by training only the last few layers of the
CNNs to capture the unique features of new workers.
Let ~ym,v be the probabilistic classification made by the

Figure 3. Schematic diagram of the fusion of right-hand and left-hand AR models.

Figure 2. The proposed CNN architecture.

4 Proc IMechE Part C: J Mechanical Engineering Science 0(0)



calibrated model m, then the fusion of calibrated
models yields the prediction, ð ~yL,v þ ~yR,vÞ=2.

Experimental studies

To illustrate the proposed methodology of AR in
assembly and assess the performance of it, a worksta-
tion for assembling Bukito 3D printers was set up in a
lab, as shown in Figure 4. Material and tools to be
used in the assembly were set on the workstation.
Following the method delineated in the subsection
‘‘Data preparation’’, time series sensor data of work-
ers were obtained. IMU data collected from the two
armbands were transmitted to two separate com-
puters via the Bluetooth units of the armbands.
Then, ASIs were extracted from the time series of sig-
nals using a sliding window that can cover 2 s of data.
Any two successive ASIs have a 50% overlap. Based
on numerical experiments, the window size of 2 s and
the 50% overlap were found to be an appropriate
setting of the sliding window technique for extracting
ASIs in this study.

Seven assembly actions

The study used one step in assembling Bukito 3D
printers, named ‘‘putting on the handle’’ in the

assembly manual, as an example. This step of
assembly consists of seven actions, as described in
Figure 5. From the description of actions, it can be
seen that the worker dominantly uses his left hand to
perform action-1 and his right hand to perform
action 2. The remaining actions require the collabor-
ation of two hands, but roles of the two hands vary
among these actions. For example, in action-4 the
worker uses his left hand to hold the handle and
his right hand to rotate the screw to manually
tighten it. That is, the left hand mainly facilitates
the right hand that dominantly performs the assem-
bly. Yet in action-5, the left hand of the worker
grabs the Allen key set and uses the right hand to
pick the desired tool from the set. That is, the two
hands have near equal importance in this action for
preparing the next action. This assembly step con-
tains a variety of actions with either a single hand or
the collaboration of two hands, thus being a good
example for illustrating and evaluating the effective-
ness of model fusion.

The group size of subjects

While the smart manufacturing community is using
new technologies such as IoT and wearable devices
to study human, there is no publicly available large
benchmark datasets of assembly actions. Publicly
available datasets on daily living activities, which
have been used for the purpose of CNN-based
AR, mostly include 4–14 subjects.26 Therefore, this
study invited a group of 11 volunteers to participate
in the experiments to capture between-subject vari-
ability (i.e. worker heterogeneity). To count the
within-subject variability (the randomness of
human actions), the 11 subjects repeated the assem-
bly step for 10 times. This group is called the
11-subject group in the remainder of this paper.
A subset of the 11-subject group, which is composed
of only five subjects and named the 5-subject group,
was defined as well. The study used these two groups
of subjects to demonstrate the impact of worker het-
erogeneity to both model development and model
implementation.

Figure 5. The seven assembly actions.

Figure 4. Experimental setup.
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Dataset details

The assembly step in this study lasts for approxi-
mately 120 s. For each subject, nearly 60,000 samples
(10 repetitions� 120 s� 50Hz) of IMU data were
acquired. Therefore, the sample size for the 5-subject
group is 300,000, and sample size for the 11-subject
group is 660,000. From these samples of IMU data,
2230 ASIs were created for the 5-subject group and
4934 ASIs for the 11-subject group. The distributions
of ASIs across actions are further summarized in
Table 1.

The study used two cross-validation methods:
training-testing split (TTS) and leave one out
(LOO). In the implementation of TTS, 80% of ASIs
were used for training and 20% for testing. When
implementing LOO for the 5-subject dataset, about
80% of images were used for training and 20% for
testing. For the 11-subject dataset, about 91% of
images were for training and 9% for testing. Table 1
further summarizes the sizes of training dataset and
testing dataset, respectively, in details.

Evaluation methods

This study primarily used the TTS method to evaluate
the effectiveness of model fusion. Then, it further used
the LOO method to assess the effectiveness of model
calibration. Figure 6 illustrates how the collected data
from a group of subjects were split into a training
dataset and a testing dataset. When the TTS method
was used, 80% of the data from each subject were
randomly sampled to train the AR models and the
remaining 20% of the data were used for testing the
models. The TTS evaluation was repeated 15 times to
construct an interval estimate for the classification
accuracy.

In use of the LOO method, the data of Nac � 1
subjects were used for training the AR models and
the data of the remaining one subject were used for
testing. The LOO evaluation was performed Nac times
and each time a different worker from the group was
tested.

To calibrate the AR models and make them adapt
to the subject of testing in LOO, 20% of the data from
that subject were used to fine-tune the models, and the
remaining 80% of the data were used to test the per-
formance of the fine-tuned models.

Result analysis

The study assessed the fusion of LH-IMU and RH-
IMU AR models using the TTS method, which is
applicable to the situation that the group of workers
does not change from the model development to
implementation. Then, the assessment using the
LOO method was further performed to evaluate the
effectiveness of model calibration for the scenario
where the AR models are applied to new workers
whose data originally were not included in the dataset
for training the AR models.

Effectiveness of model fusion (assessed using
the TTS method)

The overall effectiveness. Figure 7 compares the 90%
interval estimates of the prediction accuracy of
the LH-IMU model, the RH-IMU model, and the
fusion of the two models. It can be seen that the
RH-IMU model performs better than the LH-IMU
model, with a 3.5% increase for the 5-subject group,
and a 5.6% increase for the 11-subject group. Fusion
of the two models further adds 4.6% and 4.9%
increases for the two groups, respectively. To gain
more insights into the observation, the study further
assessed the model performance at the action level.

At the action level. Using the 11-subject group as an
example, Figure 8 compares the interval estimates of
the prediction accuracy of LH-IMU, RH-IMU, and
the fusion of them in predicting each of the seven
actions. The RH-IMU model performs better than
the LH-IMU model in recognizing 6 out of 7 actions
(except for action-1). This is because the right hand
plays either a dominant role or an indispensable role
in almost all actions (except for action-1), whereas the

Table 1. Sample size (# signal images) of action classes.

5-subject group 11-subject group

Action-1 136 286

Action-2 164 376

Action-3 268 606

Action-4 362 788

Action-5 278 666

Action-6 740 1560

Action-7 282 652

Total 2230 4934

TTS

Training 1784 3948

Testing 446 986

LOO

Training 1970–1646 4674–4350

Testing 260–584 260–584

TTS: training-testing split; LOO: leave one out. Figure 6. TTS and LOO evaluation methods.
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left hand has such importance in less number of
actions (action-5, -6, and -7). Therefore, the RH-
IMU model provides more useful features for AR
than does the LH-IMU model.

The difference between the average prediction
accuracy of the RH-IMU model and that of the
LH-IMU model is relatively large in predicting
action-1 and -2, moderate in predicting action-3 and
-4, and small in action-5, -6, and -7. That is, the seven
actions can be grouped as three clusters. This obser-
vation is supported by the relationship of the two
hands in assembly, explained in the following.

. In performing action-1 and -2, workers mainly
used one hand while the other hand was idle or
near-idle.

. In performing action-3 and -4, workers dominantly
used one hand but required a little bit of help from
the other hand.

. In performing the remaining three actions, two
hands either closely collaborated with each other
(such as action-6) or the two hands respectively
had relatively independent operations (such as
action-5 and -7).

Figure 8 shows that the model fusion increases the
accuracy in predicting action-5, -6, and -7 than the
best individual AR mode for them at a 90% confi-
dence level. Therefore, the model fusion particularly
improves the prediction accuracy on actions that
require a collaboration of two hands with near
equal importance (i.e. no hand is idle or just facilitates

Figure 8. The effectiveness of AR model fusion (by actions) for the 11-subject group.

Figure 7. The overall effectiveness of model fusion (TTS evaluation).

Al-Amin et al. 7



the other hand). Figure 8 further shows that the
model fusion has higher average accuracy than
both AR models in recognizing any of the seven
actions although the increase may not be at the
90% confidence level. As it can provide consistently
better performance than any individual model in
recognizing any of the seven actions, the model
fusion is more reliable than individual AR models
in assembly AR.

Impact of worker heterogeneity to AR. From Figure 7 it
can be observed that the two AR models and the
fusion of them all have a higher average prediction
accuracy, but a wider 90% confidence interval, in
recognizing the actions of the 5-subject group than
of the 11-subject group. This observation is asso-
ciated with the fact that the larger size group usually
has greater worker heterogeneity than does the smal-
ler size group. In this study, the 11 subjects provided
more ASIs for model testing than did 5 subjects and
thus 90% confidence intervals of the prediction
accuracy for the 11-subject groups is narrower.
Since large worker heterogeneity would deteriorate
the performance of AR, it would be helpful to
develop AR models for smaller groups of workers
with similarity than to create a model for any
workers.

Impact of action similarity to AR. Some actions that work-
ers take in assembly may share some similarity,
making it difficult to correctly classify them. Using
the 11-subject group as an example, the study com-
puted the recall matrix and precision matrix for the
classification result from model fusion, shown in

Figure 9, to verify that action similarity is a reason
for misclassification.

. Recall: the ratio of correctly predicted classes to
the total number of ground-truths.

. Precision: the ratio of correctly predicted classes to
the total number of predictions.

In both matrices, rows are true actions and col-
umns are predicted actions. Therefore, the element
at the intersection of row i and column j in the
recall matrix counts the percentage of true action i
recognized as action j. In the precision matrix this
element computes the percentage of instances classi-
fied as action j are action i. Diagonal elements in the
two matrices represent correct classifications.

From both the recall and precision matrices, it can
be seen that the recognition performance for action-3
was the lowest. A significant portion of action-3
(21.6% in the recall matrix and 15.8% in the precision
matrix) is misclassified as action-4, and vice-versa.
This is because the left hand holds the handle in
both actions, and the right hand inserts screws into
holes in action-3 and manually tightens screws using
fingers in action-4. That is, these actions involve with
the same left hand activity and slightly different right
hand activities. As a result, the misclassification hap-
pens at a relatively higher rate in recognizing these
two actions.

It has also been found that a significant portion of
action-5 (17.0% and 18.6% in the recall and precision
matrices, respectively) is misclassified as action-7, and
vice versa. This is due to the high similarity between
these two actions. Action-5 is pulling out the desired

Figure 9. Classification of actions for the 11-subject group using action fusion: (a) recall matrix and (b) precision matrix.
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tool from the tool set and action-7 is the opposite to
action-5.

Action-6 has been found to have the highest recog-
nition accuracy (95.5% recall). An important con-
tributor to this high accuracy is that action-6 takes
the longest time to complete and thus had the largest
number of ASIs in this experimental study. Therefore,
the AR models learn the pattern of this action very
well, thus subsequently improving the recognition
accuracy of this action. It has been also observed
that many actions were misclassified as action-6.
This is because this action covers almost all the
motions involved with other actions of this assembly
step, for example, finger movement, wrist movement,
and holding the handle.

Effectiveness of model calibration (assessed using
the LOO method)

Worker heterogeneity is also a challenging issue in the
model implementation. When inference subjects are
different than the subjects sampled for training
models, the prediction ability of the AR models may
be less satisfied due to worker heterogeneity. This
study used transfer learning to address this issue and
illustrated the effectiveness of this approach using the
LOO cross-validation. As described in the subsection
‘‘Evaluation methods’’, to use the AR models to rec-
ognize actions of a new worker who was not included
in the group of subjects for model training, a calibra-
tion was performed: the new worker was asked to
perform the assembly step twice and this small set
of data was used to fine-tune the AR models by
only training the two Flatten layers and the Dense
layer of the CNN in Figure 2; that is, all the layers
before the Flatten-1 layer were frozen during the
model refinement.

Overall effectiveness of model calibration. Figure 10 com-
pares the interval estimates of the prediction accuracy
of LH-RMU, RH-RMU, and the fusion of them
across the following three cases. The comparison
based on the 5-subject group is presented in
Figure 10(a) and 10(b) is the 11-subject group.

. Case (i), 80% Train – 20% Test: inference subjects
are the same as the subjects sampled for training
the AR models;

. Case (ii), LOO-Be. cali: inference subjects are dif-
ferent than the subjects sampled for training the
AR models and no model calibration is made;

. Case (iii), LOO-Af. cali: inference subjects are dif-
ferent than the subjects sampled for training the
AR models and model calibration is made.

Figure 10(a) shows the effectiveness of model cali-
bration and fusion in improving the recognition
accuracy for 5-subject groups in LOO evaluation.

For the LH-IMU model, the model calibration
increases the prediction accuracy from 59.2% to
71.0%, and with the model fusion the accuracy
reaches 79.1%, resulting an overall improvement of
19.9% (¼79.1–59.2%). Similarly, for the RH-IMU
model, the implementation of aforesaid two tech-
niques yields an improvement of 13.5% (¼79.1–
65.6%). Figure 10(b) shows similar improvements
can also be achieved for the 11-subject group. An
improvement of 18.6% (¼77.1–58.5%) is achieved
for the LH-IMU model and 9.0% (¼77.1–68.1%)
for the RH-IMU model. In short, this study broke
down the overall improvement into two elements
and allocated them to the two contributors: model
calibration and model fusion, which are summarized
in Table 2 and discussed in additional details in the
following.

From Figure 10(a) it can be seen that the predic-
tion accuracy of individual AR models in case (ii) is at
least 11.8% lower than that in case (i) for the 5-subject
group. This demonstrates that worker heterogeneity,
reflected by the change in subjects from model train-
ing to implementation, is an issue affecting the AR
accuracy. The model calibration effectively increases
the prediction accuracy of LH-IMU by 11.8% and
7.8% for RH-IMU. Although the prediction accuracy
of individual AR models in case (iii) is still lower than
that in case (i), the gap is no more than 4.0%, con-
firming that the model calibration can effectively
lower the impact of worker heterogeneity at the
implementation stage. Similar observations are in
Figure 10(b), and the model calibration increases the
prediction accuracy of LH-IMU by 8.1% and 6.1%
for RH-IMU.

Figure 10 further shows that the fusion of cali-
brated AR models further improves the accuracy
above the model calibration. For the 5-subject
group, the model fusion achieves an accuracy of
79.1%, 8.1% higher than the accuracy of the cali-
brated LH-IMU model (71.0%) and 5.7% above
that of the calibrated RH-IMU model (73.4%). For
the 11-subject group, the model fusion yields an
accuracy of 77.1%, 10.5% higher than the accuracy
of the calibrated LH-IMU model (66.6%) and 2.9%
above that of the calibrated RH-IMU model (74.2%).

At the action level. The developed AR models have
varied ability in recognizing different actions.
Therefore, the study further examined the effective-
ness of model calibration and the fusion of calibrated
models at the action level. Results for the 5-subject
group and the 11-subject group are summarized in
Tables 3 and 4, respectively.

The calibration of the LH-IMU model for the
5-subject group improves the accuracy in predicting
almost every individual action except for action-2. But
the reduced accuracy is only �0.3%, which can be
ignored. The calibration of the RH-IMU model
improves the accuracy for all actions. The fusion of
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the calibrated models has better accuracy than the
best individual model in predicting almost every
action except for action-1. The reason that the
fusion of models has lower accuracy than the cali-
brated LH-IMU model in predicting action-1 is due
to the fact that a 50% weight was put on the

RH-IMU model that was not very capable in predict-
ing the left-hand dominated action-1 (44.4% accuracy
after calibration).

On the 11-subject group, calibration of the
LH-IMU model improves the accuracy in predicting
every individual action. The calibration of the
RH-IMU model also improves the accuracy in pre-
dicting every individual action. The fusion of cali-
brated models has a higher prediction accuracy than
the best individual model in predicting 5 out of 7
actions (except for action-2 and -5).

The analysis above indicates that the model cali-
bration and fusion might not work well for actions
dominantly performed by a single hand such as
actions-1 and -2. But statistically speaking, the cali-
bration of AR models improves the accuracy in pre-
dicting individual actions at a 90% confidence level;
the fusion of the calibrated models can improve the
accuracy in predicting individual actions, yet it is not

Figure 10. Overall improvement by model calibration: (a) 5-subject group, (b) 11-subject group.

Table 2. Improvements by calibration and fusion of AR

models.

5-subject group 11-subject group

LH-IMU RH-IMU LH-IMU RH-IMU

Cal. 11.8% 7.8% 8.1% 6.1%

Fus. 8.1% 5.7% 10.5% 2.9%

Both 19.9% 13.5% 18.6% 9.0%

LH-IMU: left-hand inertial measurement unit; RH-IMU: right-hand iner-

tial measurement unit.
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at the 90% confidence level. The average improve-
ment by the calibration of LH-IMU is the largest,
followed by the calibration of RH-IMU. The
improvement by the fusion of the calibrated models
is smaller than the model calibration.

At the subject level. The study also examined the effect-
iveness of model calibration and fusion at the subject
level. Results for the 5-subject group and the 11-sub-
ject group are summarized in Tables 5 and 6, respect-
ively. For both groups, the model calibration
improved the prediction accuracy for all subjects.
The average improvement for the LH-IMU is higher
than that for the RH-IMU model.

The fusion of calibrated models has a higher accur-
acy than the best calibrated model for all subjects in
the 5-subject group and for most subjects in the
11-subject group (except for subjects-4, -6, and -7).
Yet statistically speaking, the fusion of calibrated

Table 3. Prediction accuracy (%) at the action level: before vs after calibration (5-subject group).

Action-1 Action-2 Action-3 Action-4 Action-5 Action-6 Action-7 Avg. m.e.

LH-IMU

Before 55.1 61.6 49.6 54.7 38.8 75.4 52.5 55.4 8.2

After 80.6 61.3 55.7 66.7 58.8 88.7 57.3 67.0 9.4

Impr 25.5 �0.3 6.1 12.0 20.0 13.3 4.8 11.6 6.6

RH-IMU

Before 29.4 73.8 53.4 72.9 51.4 83.5 47.5 58.8 13.8

After 44.4 82.3 61.0 74.7 69.0 86.7 61.6 68.5 10.6

Impr 15.0 8.5 7.6 1.8 17.6 3.2 14.1 9.7 4.5

Fusion

Before 45.6 80.5 57.1 69.3 51.8 87.7 55.6 63.9 11.5

After 71.3 86.3 63.3 79.0 69.0 93.6 65.9 75.5 8.3

Impr �9.3 4.0 2.3 4.3 0.0 4.9 4.3 1.5 3.7

LH-IMU: left-hand inertial measurement unit; RH-IMU: right-hand inertial measurement unit.

Table 4. Prediction accuracy (%) at the action level: before vs after calibration (11-subject group).

Action-1 Action-2 Action-3 Action-4 Action-5 Action-6 Action-7 Avg. m.e.

LH-IMU

Before 63.3 41.5 28.7 46.8 51.8 78.5 42.4 50.4 11.9

After 67.8 60.0 43.7 68.4 55.1 85.1 56.5 62.4 9.6

Impr 4.5 18.5 15.0 21.6 3.3 6.6 14.1 11.9 5.3

RH-IMU

Before 54.5 78.7 48.8 68.1 58.9 84.4 50.0 63.4 10.3

After 57.0 81.0 60.0 77.8 64.7 88.2 62.8 70.2 8.8

Impr 2.5 2.3 11.2 9.7 5.8 3.8 12.8 6.9 3.2

Fusion

Before 72.4 75.0 42.2 69.9 61.7 92.1 49.2 66.1 12.3

After 74.3 78.3 60.8 80.6 63.8 93.2 63.8 73.5 8.5

Impr 6.5 �2.7 0.8 2.8 �0.9 5.0 1.0 1.8 2.4

LH-IMU: left-hand inertial measurement unit; RH-IMU: right-hand inertial measurement unit.

Table 5. Prediction accuracy (%) at the subject level: before

vs after calibration (5-subject group).

Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Avg. m.e.

LH-IMU

Before 61.9 63.2 69.6 53.9 54.6 60.6 6.2

After 74.5 70.5 83.0 70.7 64.0 72.5 6.6

Impr 12.6 7.3 13.4 16.8 9.4 11.9 3.5

RH-IMU

Before 69.8 66.4 78.5 61.0 60.6 67.3 7.0

After 74.8 71.6 89.3 70.9 68.9 75.1 7.8

Impr 5.0 5.2 10.8 9.9 8.3 7.8 2.5

Fusion

Before 73.0 72.2 84.2 61.7 65.2 71.3 8.2

After 81.1 77.0 90.8 78.8 74.7 80.5 5.9

Impr 6.3 5.4 1.5 7.9 5.8 5.4 2.3

LH-IMU: left-hand inertial measurement unit; RH-IMU: right-hand iner-

tial measurement unit.
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models improves the prediction accuracy for individ-
ual subjects at a 90% confidence level. The average
improvement by the fusion of calibrated models in the
larger group is 1.9%, less than the average improve-
ment of 5.4% in the smaller group. This might be an
evidence of the challenge facing a larger group of sub-
jects. The fusion of the calibrated models makes a
smaller contribution to the prediction accuracy than
does the calibration of individual models.

Conclusions and future work

This paper proposed a method that uses two devices
worn on the two hands of workers to collect IMU
data when they are assembling products. Two CNN
models for AR, a left-hand model, and a right-hand
model, were independently developed using the
respective two sources of IMU data. The two CNN
models were fused together to yield a better AR result.
Transfer learning was applied to refine the AR models
and make them adapt to new workers who were not in
the original group of subjects sampled for training the
AR models. A small-scale assembly of Bukito 3D
printers was performed in a lab setting to illustrate
the implementation and assessment of the proposed
method. Improvements made by the model fusion and
refining have been consistently achieved in recogniz-
ing various actions of different assembly workers.

This paper has both methodological contributions
and insightful findings. Therefore, it builds a sound
foundation for recognition of assembly actions.
Firstly, the method proposed in this paper is kept in
general. Manufacturers can easily follow the proposed
approach to build the capability of AR in their own
assembly lines. Secondly, the proposed method is
focused on recognizing composite actions that each
is clearly driven by an intermediate objective and
sequentially meeting these objectives will achieve cer-
tain progress of assembly (such as one step of assem-
bly). With the AR capability at such a detailed level,
manufacturers are able to diagnose potential issues

that their assembly workers have in real time and
quickly address the issues with appropriate methods
such as on-the-job training or personalized assistance.
Thirdly, the paper has demonstrated that the fusion of
two independent IMU-based AR models largely
improves the prediction accuracy of actions that
require an active collaboration of two hands. This
provides a guidance for designing and deploying mul-
tiple sensors to capture human actions involved in the
collaboration of multiple body parts. Last but not the
least, this paper has demonstrated the impact of
worker heterogeneity to both the model development
and implementation. To address this issue in the
model development stage, the paper suggests to
train customized AR models for each individual
group of subjects who share similarity. The paper
has shown the effectiveness of using transfer
learning to refine AR models to make them adapt to
subjects different than those that the models were
trained from.

Although the refining and fusion of only two IMU-
based deep learning models have been found to be
effective in creating a good capability of recognizing
assembly actions, the room and opportunities for
improvement exist. First of all, actions that take a
short period of time to finish usually have less samples
of ASI and cannot be reliably recognized.
Oversampling is a way to address this uneven distri-
bution of samples across actions. Moreover, IMU
sensors may be outperformed by other sensors in
recognizing some actions. For example, IMU may
not have the right level of accuracy to detect and char-
acterize subtle motions but sEMG sensors can achieve
that by providing signals of muscle activities. The
fusion of multiple types of sensors is another dimen-
sion of performance improvement that can be built
above this paper. Time coherence is also an approach
to improving the accuracy and precision of assembly
AR. Assembly actions are taken in sequence with each
lasting for a period of time. Incorporating the time
coherence information of actions in assembly AR

Table 6. Prediction accuracy (%) at the subject level: before vs. after calibration (11-subject group).

Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Sub-6 Sub-7 Sub-8 Sub-9 Sub-10 Sub-11 Avg. m.e.

LH-IMU

Before 53.7 62.3 57.6 61.5 35.1 46.6 55.9 61.7 54.5 66.2 51.5 55.1 4.7

After 73.0 70.8 64.9 75.2 63.4 65.6 59.7 73.7 61.9 67.8 62.0 67.1 2.9

Impr 19.3 8.5 7.3 13.7 28.3 19.0 3.8 12.0 7.4 1.6 10.5 11.9 4.2

RH-IMU

Before 63.4 72.4 58.0 87.3 64.4 76.8 46.8 65.2 72.6 72.7 65.8 67.8 5.8

After 75.8 78.1 77.9 93.2 67.0 82.1 51.5 74.4 78.1 78.1 70.9 75.2 5.6

Impr 12.4 5.7 19.9 5.9 2.6 5.3 4.7 9.2 5.5 5.4 5.1 7.4 2.7

Fusion

Before 78.5 74.4 66.0 89.2 62.0 66.2 56.7 74.2 76.7 77.3 57.7 70.8 5.4

After 80.4 81.5 81.1 91.3 71.1 78.5 57.2 78.8 81.9 82.4 72.3 77.9 4.7

Impr 4.6 3.4 3.2 �1.9 4.1 �3.6 �2.5 4.4 3.8 4.3 1.4 1.9 1.7

LH-IMU: left-hand inertial measurement unit; RH-IMU: right-hand inertial measurement unit.
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would help reduce the number of misclassifications.
The number of subjects in the training dataset can
also be increased to incorporate more human hetero-
geneity so that the model is more robust. The work
can also be scaled up by increasing the number of
actions, which can better facilitate AR in a wider
range of operations in assembly. This paper had
built a sound foundation for exploring these oppor-
tunities of improvement.

Note to practitioners

The advancement of automation and smart technolo-
gies has shifted the role of manufacturing workers
from tedious, time-consuming, and risky operations
to knowledge-intensive tasks. For example, assembly
is an important stage of manufacturing that workers
have many complex actions to take. Therefore, manu-
facturers are interested in providing real-time assist-
ance or on-the-job training to assure their workers
have reliable and high performance in such operations
and can effectively collaborate with machines, robots,
and smart technologies. Difficulties that workers may
have in operations are partially reflected by what they
are doing and how. This paper used wearable devices
to collect sensor data of workers in operations and
developed a deep learning based tool to process the
data for recognizing assembly actions. This paper fur-
ther improved the performance of AR by calibrating
multiple solutions and then integrating them into one
that has a better accuracy and can reliably recognize
various assembly actions of different workers. The
proposed method of assembly AR is kept in general.
Manufacturers can easily follow the approach in this
paper to build the capability of AR in their own
assembly lines. The proposed method is able to rec-
ognize assembly actions that each has a clear inter-
mediate objective and, therefore, manufacturers
can analyze the recognized actions to better assess
the performance of workers. Opportunities for
improving the performance of the proposed method
have been identified in this paper, such as using the
sequential relationship of actions to reduce mistakes
in assembly AR.
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